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Abstract 1 

Purpose: To derive and validate an effective radiomics-based model for differentiation of COVID-19 2 

pneumonia from other lung diseases using a very large cohort of patients. 3 

 4 

Methods: We collected 19 private and 5 public datasets, accumulating to 26,307 individual patient 5 

images (15,148 COVID-19; 9,657 with other lung diseases e.g. non-COVID-19 pneumonia, lung 6 

cancer, pulmonary embolism; 1502 normal cases). Images were automatically segmented using a 7 

validated deep learning (DL) model and the results carefully reviewed. Images were first cropped into 8 

lung-only region boxes, then resized to 296×216 voxels. Voxel dimensions was resized to 1×1×1mm3 9 

followed by 64-bin discretization. The 108 extracted features included shape, first-order histogram and 10 

texture features. Univariate analysis was first performed using simple logistic regression. The thresholds 11 

were fixed in the training set and then evaluation performed on the test set. False discovery rate (FDR) 12 

correction was applied to the p-values. Z-Score normalization was applied to all features. For 13 

multivariate analysis, features with high correlation (R2>0.99) were eliminated first using Pearson 14 

correlation. We tested 96 different machine learning strategies through cross-combining 4 feature 15 

selectors or 8 dimensionality reduction techniques with 8 classifiers. We trained and evaluated our 16 

models using 3 different datasets: 1) the entire dataset (26,307 patients: 15,148 COVID-19; 11,159 non-17 

COVID-19); 2) excluding normal patients in non-COVID-19, and including only RT-PCR positive 18 

COVID-19 cases in the COVID-19 class (20,697 patients including 12,419 COVID-19, and 8,278 non-19 

COVID-19)); 3) including only non-COVID-19 pneumonia patients and a random sample of COVID-20 

19 patients (5,582 patients: 3,000 COVID-19, and 2,582 non-COVID-19) to provide balanced classes. 21 

Subsequently, each of these 3 datasets were randomly split into 70% and 30% for training and testing, 22 

respectively. All various steps, including feature preprocessing, feature selection, and classification, 23 

were performed separately in each dataset. Classification algorithms were optimized during training 24 

using grid search algorithms. The best models were chosen by a one -standard-deviation rule in 10-fold 25 

cross-validation and then were evaluated on the test sets. 26 

 27 

Results: In dataset #1, Relief feature selection and RF classifier combination resulted in the highest 28 

performance (Area under the receiver operating characteristic curve (AUC) = 0.99, sensitivity = 0.98, 29 

specificity = 0.94, accuracy = 0.96, positive predictive value (PPV) = 0.96, and negative predicted value 30 

(NPV) = 0.96). In dataset #2, Recursive Feature Elimination (RFE) feature selection and Random Forest 31 

(RF) classifier combination resulted in the highest performance (AUC = 0.99, sensitivity = 0.98, 32 

specificity = 0.95, accuracy = 0.97, PPV = 0.96, and NPV = 0.98). In dataset #3, the ANOVA feature 33 

selection and RF classifier combination resulted in the highest performance (AUC = 0.98, sensitivity = 34 

0.96, specificity = 0.93, accuracy = 0.94, PPV = 0.93, NPV = 0.96). 35 

 36 

Conclusion: Radiomic features extracted from entire lung combined with machine learning algorithms 37 

can enable very effective, routine diagnosis of COVID-19 pneumonia from CT images without the use 38 

of any other diagnostic test. 39 

 40 

Keywords: COVID-19; computed tomography; radiomics; deep learning; image classification. 41 
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INTRODUCTION 1 

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has 2 

raised great concerns worldwide 1. As of December 2021, it has been responsible for more than 265 3 

million confirmed cases and 5 million deaths all over the globe (see who.int). Different diagnostic 4 

methods have been proposed for SARS-CoV-2, also known as COVID-19. The most popular is the real-5 

time reverse transcriptase-polymerase chain reaction (RT-PCR), which is a molecular test 2-6. Although 6 

RT-PCR is a highly reputable diagnostic test, it has some drawbacks, such as the delay in providing test 7 

reports, the remarkable effort of healthcare professionals in the process of sampling, and last but not 8 

least, the limited availability of the test kits especially in developing countries. In this regard, many 9 

physicians have turned to other diagnostic methods, including chest X-ray (CXR) and computed 10 

tomography (CT). CXR plays an important role in the non-invasive, fast, widely available, and cost-11 

effective assessment of pulmonary lesions 7. In the context of COVID-19, some characteristics, such as 12 

ground glass or patchy opacities can be linked with COVID-19 pneumonia in a CXR. Nonetheless, 13 

discovering these findings requires expertise as these changes are subtle 8. CT images, on the other 14 

hand, better demonstrate the opacities and are useful even for the early diagnosis of COVID-19 15 

pneumonia in asymptomatic/pre-symptomatic patients 9. Moreover, CT shows a significantly higher 16 

sensitivity compared to CXR 10,11. Thus, it is better suited in the triage of patients if a scanner is available 17 

and the higher dose of X-rays to the patient via CT imaging is carefully considered 11. 18 

A wide range of studies has been published on the clinical use of CT and its qualitative and 19 

quantitative analysis for the diagnosis and management of COVID-19 patients 12,13. A number of 20 

qualitative/semi-quantitative findings in chest CT, such as the presence and laterality of ground-glass 21 

opacities and consolidation, number of lobes affected, the extent of lung involvement are used as 22 

acceptable features for COVID-19 diagnosis 14. Nevertheless, these findings are most likely to be 23 

subjective, rely on physician’s inference, and have very low specificity for a definitive diagnosis of 24 

COVID-19 15. Artificial Intelligence (AI) has been proposed as a solution to address the aforementioned 25 

limitations of CT (e.g., low specificity) as it provides with tools that can visualize and extract the most 26 

subtle and minute characteristics of images. 27 

Radiomics, a high-level image analysis technique that mines multi-dimensional data from medical 28 

images, has especially emerged in the past decade 16-30 and is continuing to grow. It has been utilized in 29 

a range of diseases towards improved diagnosis, prognosis, treatment response assessment and other 30 

aspects of patient management. Recently, COVID-19 researchers have conducted a number of CT 31 

radiomics studies 17-19,31. For prognosis, Tang et al. 32 focused on the prediction of COVID-19 severity 32 

using radiomics features of CT images and laboratory data. In another study, Wu et al. 33 analyzed the 33 

prognostic ability of radiomics features based on CT images of 492 patients to determine the poor-34 

outcome group. Studies reported on the feasibility of deep learning (DL)/radiomics applied to CT 35 

images towards classification (e.g. COVID-19 pneumonia, non-COVID-19 pneumonia, other lung 36 
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diseases, or normal images). Harmon et al. 34 trained a DL-based neural network and validated it on a 1 

cohort of 1337 patients. Bai et al. 35 included 1186 patients and evaluated an AI model for classifying 2 

CT images into COVID-19 and non-COVID-19 pneumonia. Zhang et al. 36 conducted a study on 3777 3 

patients and evaluated an AI system with the addition of clinical data to determine whether an image 4 

reflects COVID-19 pneumonia, other pneumonia, or normal. Di et al. 37 utilized radiomic features to 5 

assess the differentiation of COVID-19 pneumonia and community-acquired pneumonia in 3330 6 

patients. Xie et al. 38 evaluated the ability of radiomics features and ground-glass opacities in 301 7 

patients for the discrimination of COVID-19 and non-COVID-19 patients. 8 

Most aforementioned studies utilized datasets consisting of the dichotomy of COVID-19 pneumonia 9 

vs. other non-COVID-19 pneumonia, or COVID-19 vs. normal patients. However, some CXR or CT 10 

studies included other lung diseases as well. For instance, Albahli et al. 39 included 14 classes of diseases 11 

(e.g. cancer, pneumothorax, fibrosis, edema, atelectasis, etc.) in their dataset and trained their model on 12 

CXR images. Das et al. 40 also included tuberculosis patients and added their images to COVID-19 13 

pneumonia, other pneumonia, and healthy CXR images of their dataset. Wang et al. 41 studied a dataset 14 

consisting of COVID-19 and other lung disease images in addition to normal lung images.  15 

Several limitations were reported in a systematic review by Roberts et al. 42, which included more 16 

than 2,000 original articles focusing on the development of different DL/ML-based algorithms in 17 

diagnosis/prognosis of COVID-19 patients. First and foremost is data bias, many articles have used 18 

datasets with small sample sizes, duplicate samples, low quality or non-standardized medical image 19 

format. Moreover, many researchers have studied so-called Frankenstein 42 and Toy 43 datasets, utilizing 20 

small and/or low-quality images, which assemble and redistributed from other datasets 42. In addition, 21 

most of studies have not provided sufficient information regarding data preprocessing, demographics 22 

of training/testing cohorts, and code and data availability. Roberts et al. 42 reported that most articles in 23 

the diagnostic era failed to balance the number of COVID-19 and other classes of diseases in the training 24 

and testing datasets. For example, a study may have included considerably fewer COVID-19 cases 25 

compared to other cases. Regarding the methodology, most of the studies failed to elucidate an exact 26 

methodology which is a must for conducting a reproducible study. Hence, few studies are practical in 27 

real clinical situations. 28 

In the present study, we have gathered a multi-institutional, multi-national CT image datasets of 29 

more than 26,307 patients containing COVID-19, non-COVID-19 pneumonia, and other lung 30 

pathologies. We aimed to assess the value of systematically utilizing CT-based radiomics to distinguish 31 

COVID-19 pneumonia from non-COVID-19 pneumonia and other types of lung diseases, using 32 

multiple dimensionality reduction, feature selection, and classification algorithms. To this end, we have 33 

assembled and utilized a very large, curated dataset and applied different AI, radiomics and 34 

prognostic/diagnostic modeling guidelines. 35 

 36 
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MATERIALS AND METHODS 1 

The methodological steps adopted in this study can be found in Figure 1. We filled out several 2 

standardized checklists regarding diagnostic modelling (TRIPOD, Transparent Reporting of a 3 

multivariable prediction model for Individual Prognosis Or Diagnosis [40]), and AI in medical image 4 

analysis (CLAIM, Checklist for Artificial Intelligence in Medical imaging 44) to ensure the 5 

reproducibility and decency of our study. The two checklists were completed separately by two expert 6 

medical imaging scientists in the field of radiomics and AI (with consensus) who were not co-authors 7 

of this study. The complete checklist of standardizations was provided in the supplementary files. 8 

Datasets 9 

The data of this study consisted of 18 local and 5 public datasets containing both COVID-19 and other 10 

lung diseases, arriving at 26,307 individual patient images (15,148 COVID-19; 9,657 with other lung 11 

diseases including non-COVID-19 pneumonia, lung cancer pulmonary embolism; and 1,502 normal). 12 

Our public dataset consisted of 5 separate datasets, including 1,744 COVID-19 34,45,46, pulmonary 13 

embolism (PE, n=5,696) 47, and lung cancer (n=1,379) 45 CT images. Our private datasets were 14 

assembled in this effort from 18 clinical centers in Iran totaling 13,404 COVID-19 patients with the 15 

same number of CT images (one image per patient). Our study was approved by the local ethics 16 

committees, and written informed consent was waived owing to its retrospective nature. 17 

To be included in the study, patients had to have either a positive RT-PCR result or positive CT 18 

findings. CT findings were considered as consistent with COVID-19 if: (a) typical COVID-19 patterns 19 

and manifestations are observed as described in the COVID-19 Reporting and Data System (CO-20 

RADS) 48, and (b) two radiologists separately reached a conclusion that CT images are compatible with 21 

COVID-19 patterns, and (c) a third radiologist confirmed the diagnosis if the two former radiologists 22 

face a discrepancy in their opinions. After including the eligible patients, we applied our exclusion 23 

criteria to prepare a cleaner dataset. The exclusion criteria were as follows: patients who had negative 24 

RT-PCR result (n= 1,900), patients with severe motion artefacts in CT images confirmed by an 25 

experienced medical physicist (n= 560), patients with inappropriate positions in CT images (n= 121), 26 

patients with low-quality CT images (n= 210).  In addition, 1,379 normal cases without any sign in CT 27 

images or background of lung disease, and 2,582 patients with other pneumonia (non-COVID-19) were 28 

enrolled to this study. After applying the aforementioned exclusion criteria, a total of 26,307 patients 29 

were enrolled as our overall dataset. Images were acquired in different medical centers using various 30 

CT scanners, there was a variability in acquisition parameters such as tube current and slice thickness. 31 

In our local medical centers, CT imaging was performed at the end inhalation breath-hold to decrease 32 

respiratory motion artefacts. More information on public database were provided in 34,45-47. 33 

 34 
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Image Segmentation, Image Preprocessing, and Feature Extraction 1 

The images were segmented automatically using a previously constructed DL algorithm 49 and were 2 

reviewed to confirm the segmentation outcome. The images were first cropped to attain the lung-only 3 

region box, then resized to 296×216. Image voxel size was resized to 1×1×1 mm3 followed by 64-bin 4 

discretization. Radiomics feature extraction was performed using the Pyradiomcis library 50, which has 5 

been standardized according to the Image Biomarker Standardization Initiative (IBSI) 51. The 108 6 

extracted features included shape (n=16), first-order histogram, second-order Gray Level Co-7 

occurrence Matrix (GLCM, n=24), and higher-order features including Gray Level Dependence Matrix 8 

(GLDM, n=14), Gray Level Size Zone Matrix (GLSZM, n=16), Gray Level Run Length Matrix 9 

(GLRLM, n=16), and Neighboring Gray Tone Difference Matrix (NGTDM, n=5). 10 

Univariate Analysis 11 

Univariate analysis was performed by using simple logistic regression; each feature was trained on the 12 

training sets, and the results were reported on the testing sets. Benjamin and Hochberg false discovery 13 

rate (FDR) corrections was applied to the p-values. Statistical comparison of AUCs between training 14 

sets and test sets was performed by the DeLong test [41] to ascertain best performance. 15 

Feature Preprocessing, Feature Selection, and Classifiers  16 

Z-Score normalization was applied to all features. The mean and standard deviation were calculated in 17 

the training sets and then applied to testing sets. Features with high correlation (R2>0.99) were 18 

eliminated using Pearson correlation. In this study, we used 4 feature selection algorithms, including 19 

Analysis of Variance (ANOVA), Kruskal-Wallis (KW), Recursive Feature Elimination (RFE), and 20 

Relief, and 8 dimensionality reduction techniques, including Principal Component Analysis (PCA), 21 

Incremental PCA (IPCA), Kernel PCA (KPCA), Truncated SVD (TSVD), Gaussian Random Projection 22 

(GRP), Sparse Random Projection (SRP), Fast ICA (FICA), and TSNE. For the classification task, we 23 

used 8 classifiers, including Logistic Regression (LR), Least Absolute Shrinkage and Selection 24 

Operator (LASSO), Linear Discriminant Analysis (LDA), Decision Tree (DT), Random Forest (RF), 25 

AdaBoost (AB), Naïve Bayes (NB), and Multilayer Perceptron (MLP). By cross-combining our 4 26 

feature selectors + 8 dimensionality reduction techniques with the 8 classifiers, we tested 96 different 27 

combinations. 28 

Evaluation 29 

We trained and evaluated our models in 3 different scenarios. First of all, the entire dataset (26,307 30 

patients including 15,148 COVID-19 and 11,159 non-COVID-19) being randomly split into 70% 31 

(18,414 patients) and 30% (7,893 patients) for the training and test sets, respectively. As our data 32 

included patients whose COVID-19 was confirmed using RT-PCR and patients confirmed only by 33 

imaging, this dataset included both populations. Second, excluding normal patients in other lung disease 34 

class, and only including RT-PCR positive COVID-19 cases in COVID-19 class, the resulting dataset 35 

(20,697 patients including 12,419 COVID-19, and 8,278 non-COVID-19) was randomly split into 70% 36 
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(14,677 patients) and 30% (6,209 patients) for the training and test sets, respectively. In Third dataset, 1 

only including non-COVID-19 pneumonia patients and a random sample of COVID-19 patients (5,582 2 

patients including 3,000 COVID-19 and 2,582 non-COVID-19) to provide a balanced dataset, and then 3 

randomly split the dataset into 70% (3,907 patients) and 30% (1,675 patients) for the training and test 4 

sets, respectively. 5 

The multivariate steps, including feature preprocessing, feature selection, and classification were 6 

performed separately for each dataset. Classification algorithms were optimized during training using 7 

grid search algorithms. The best models were chosen by a one-standard-deviation rule in 10-fold cross-8 

validation and then evaluated on test sets.  The accuracy, sensitivity, specificity, area under the receiver 9 

operating characteristic curve (AUC), positive predictive value (PPV), and negative predicted value 10 

(NPV) were reported for the test set. Statistical comparison of AUCs between the different models in 11 

the test sets was performed by the DeLong test 52 to ascertain best performances. The significance level 12 

was considered at the level of 0.05. All multivariate analysis steps were performed in the Python open-13 

source library Scikit-Learn 53. 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 
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RESULTS 1 

Figure 2 shows the hierarchical clustering heat map of the radiomics feature distribution for COVID-2 

19 and lung disease classes for the entire dataset (i.e. dataset #1). We provide a hierarchical clustering 3 

heat map for strategies 2 and 3 in Supplemental Figures 1 and 2, respectively. The correlation of 4 

radiomic features are depicted in Figure 3 for the entire dataset, whereas Supplemental Figures 3 and 4 5 

show the same for strategies 2 and 3. Highly correlated features (R2>0.99) were identified and redundant 6 

features eliminated, enabling dimensionality reduction in an unsupervised manner, prior to multivariate 7 

analysis using machine learning algorithms. 8 

Supplemental Tables 1-3 summarize univariate analysis for each feature in strategies 1, 2 and 3, 9 

respectively. We report the training and test AUC, sensitivity, specificity, and also adjusted p-values 10 

(using Benjamin and Hochberg FDR method) for each feature using binary logistic regression. When 11 

comparing AUCs, none of the features had a p-value<0.05 for the training and test sets using the 12 

DeLong test. In dataset #1, 3 features including Robust Mean Absolute Deviation from first-order (AUC 13 

= 0.55, Sensitivity = 0.54, Specificity = 0.56), Small Area High Gray Level Emphasis from GLSZM 14 

(AUC = 0.55, Sensitivity = 0.61, Specificity = 0.55), and Long-Run High Gray Level Emphasis form 15 

GLRLM (AUC = 0.5, Sensitivity = 0.54, Specificity = 0.50) had AUC, sensitivity and specificity higher 16 

than 0.50. For strategies 2 and 3, Robust Mean Absolute Deviation from first-order (AUC = 0.55, 17 

Sensitivity = 0.54 and Specificity = 0.51) and Large Dependence Emphasis from GLDM (AUC = 0.55, 18 

Sensitivity = 0.50 and Specificity = 0.57) had AUC, sensitivity and specificity higher than 0.5, 19 

respectively.  20 

For dataset #1, Figure 4 represents the heatmap of the cross-combination of feature selectors and 21 

classifiers for AUC, sensitivity, specificity, accuracy, PPV, NPV, wherein collective datasets was 22 

randomly split into 70% (18,208 patients) and 30% (7,804 patients) for the training and test sets, 23 

respectively. Relief feature selection and RF classifier combination resulted in highest performance 24 

(AUC = 0.99, sensitivity = 0.98, specificity = 0.94, accuracy = 0.96, PPV = 0.96, NPV = 0.96). 25 

Supplemental Figure 5 presents a box plot of feature selectors and classifiers for the different evaluation 26 

metrics in dataset 1. 27 

For dataset #2, Figure 5 represents the heatmap of the cross-combination of feature selectors and 28 

classifiers for AUC, sensitivity, specificity, accuracy, PPV, NPV, wherein normal cases were excluded 29 

and CT images with PCR-Positive were included and then randomly split into 70% (15,514 patients) 30 

and 30% (6,649 patients) for the training and test sets, respectively. RFE feature selection and RF 31 

classifier combination resulted in highest performance (AUC = 0.99, sensitivity = 0.98, specificity = 32 

0.95, accuracy = 0.97, PPV = 0.96, NPV = 0.98). Supplemental Figure 6 represents a box plot of feature 33 

selectors and classifiers for different evaluation metrics in dataset #2. 34 

For dataset #3, Figure 6 represents the heatmap of the cross-combination of feature selectors and 35 

classifiers for AUC, sensitivity, specificity, accuracy, PPV, NPV, which CT images with PCR-Positive 36 
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and community-acquired pneumonia were included and then randomly split into 70% (10,205 patients) 1 

and 30% (4,200 patients) for the training and test sets, respectively. ANOVA feature selection and RF 2 

classifier combination resulted in highest performance (AUC = 0.98, sensitivity = 0.96, specificity = 3 

93, accuracy = 0.94, PPV = 0.93, NPV = 0.96). Supplemental Figure 2 represents a box plot of feature 4 

selectors and classifiers for different evaluation metrics in dataset #3. Figure 7 represents the receiver 5 

operating characteristic curve for three different strategies. Supplemental figures 8-10 represent the 6 

statistical comparison of AUC between the different models using DeLong test. 7 
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DISCUSSION 1 

In this work, we implemented multiple machine learning algorithms to detect COVID-19 in a dataset 2 

consisting of a large number of patients (COVID-19, non-COVID-19 pneumonia, lung cancer, PE and 3 

normal patients). The entire lung was segmented using automated DL algorithms, and subsequently 4 

radiomics features were extracted. Features were normalized, redundant features eliminated, and 5 

remaining features fed to feature selection algorithms and classifiers. Our models were evaluated using 6 

different strategies. We successfully discriminated COVID-19 from other lung diseases and also 7 

COVID-19 pneumonia from other pneumonia. 8 

Our findings are consistent with previous studies focusing on the same goals. A study by Fang et al. 9 

54 showed that a radiomics model based on CT imaging features could differentiate COVID-19 10 

pneumonia from other types of pneumonia with an area under the ROC curve of 95%. Their results also 11 

suggested that radiomics perform better than the clinical-only model. In another study, Tan et al. 55 12 

demonstrated the efficacy of a radiomics-based model in discovering whether a patient has COVID-19 13 

pneumonia or other types of pneumonia by analyzing the non-infectious areas of their CT scan. Their 14 

model achieved an AUC as high as 0.95 both in the training and test datasets. Di et al. 37 also studied 15 

the diagnostic accuracy of CT-based radiomics in patients and reached a robust model. Their hypergraph 16 

model could distinguish between community-acquired pneumonia and COVID-19 disease pneumonia. 17 

Although some studies investigated the power of radiomics in the differentiation of lung 18 

abnormalities as mentioned earlier. Several research studies were conducted on the application of other 19 

AI methods, such as DL/ML algorithms, and DL + radiomics models. A study by Yousefzadeh et al. 56 20 

investigated the performance of a DL-based model (ai-corona) in the differentiation task between 21 

COVID-19 pneumonia, other pneumonia, non-pneumonia, and normal images. Their model reached an 22 

AUC as high as 0.997, 0.989, and 0.954 in three different test sets. Harmon et al. 34 trained a DL 23 

algorithm on a multi-national dataset of 1,280 patients and evaluated its classification ability using a 24 

chest CT dataset of 1,337 patients. They achieved an accuracy of 90.8%. Ni et al. 57 also studied a DL 25 

model aiming to locate and detect lung abnormalities, including COVID-19 pneumonia. Their model 26 

reached 0.97 in the F1 score and assisted the radiologists in faster detection and diagnosis (p-27 

values<0.0001). 28 

Similar to most radiomics studies of COVID-19, we used chest CT images 37,38,58. However, there is 29 

ongoing research exploiting other imaging  modalities as well. For example, Bae et al. 59 evaluated the 30 

prediction ability of radiomics in chest X-rays of 514 patients. They attempted to gain assistance from 31 

other methods DL (Radiomics feature Map + DL + clinical features) and achieved AUCs of 0.93 and 32 

0.90 in the prediction of mortality and the need for mechanical ventilators, respectively. In another 33 

study by Chandra et al. 60, chest X-rays of 2,088 (training set) and 258 (testing set) patients taken at 34 

baseline, were assessed and radiomics analysis performed. They reached an AUC of 0.95 in the test set 35 

for identifying normal, suspicious, and COVID-19 groups of patients. 36 
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On the use of different lung pathologies in the dataset, several other studies have been conducted. 1 

The dataset of Amyar et al. 61 covered healthy patients as well as those with COVID-19, lung cancer, 2 

and some other lung pathologies. They achieved an AUC of 0.97 for the classification task. Wang et al. 3 

41 utilized a PARL (prior attention residual learning)-based model for the classification of CT images 4 

into COVID-19 pneumonia, other pneumonia, and non-pneumonic images and could achieve a AUC of 5 

0.97 for COVID-19 discrimination. Chen et al. 62 included 422 patients who had COVID-19, other types 6 

of pneumonia, tuberculosis, and also normal images in their dataset. Their ResNet model achieved an 7 

accuracy of 91.2% for classifying images. Our study also included several pathologies in the lung, 8 

including COVID-19, pneumonia of other types (viral and bacterial), lung cancer, and also normal lung 9 

images.  10 

Overall, several studies assessed radiomics and DL and DL + Radiomics algorithms for diagnostic 11 

and classification purposes with a small size dataset in most cases 36,63,64. In this work, we concluded 12 

that radiomic features combined with appropriate machine learning algorithm has the potential to 13 

enhance our diagnostic ability in the differentiation of COVID-19 pneumonia, other types of 14 

pneumonia, and several other lung diseases. We utilized a large-sized dataset consisting of CT images 15 

of patients from multiple institutions (multiple scanners/ imaging protocols) from different countries. 16 

The large-scale dataset of our study helped the generalizability and reproducibility of our model, which 17 

was evaluated using different scenarios. 18 

Our efforts faced a number of limitations, some of which were addressed and considered. For 19 

example, motion artefacts are inescapable when patients are undergoing CT scans. Hence, we excluded 20 

these patients as they had an overlapping region of pneumonia in their chest image. Second, not all 21 

patients were tested for COVID-19 RT-PCR as some of them were included in our study only by their 22 

positive CT signs. Thus, we attempted to overcome this limitation using different model evaluation 23 

scenarios (e.g. choosing patients with positive RT-PCR as the testing set) in order to reach a 24 

reproducible model for further studies. Third, we did not include clinical or laboratory data. However, 25 

these data have been shown to be linked with CT image features 36,65. Finally, image acquisition 26 

parameters were undoubtedly distinct in each center and affected radiomic features. Further studies 27 

should be performed using harmonized features between different centers. 28 
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CONCLUSION 1 

We evaluated multiple machine learning algorithms to detect COVID-19 pneumonia and discriminate 2 

it from other lung diseases using radiomics features of the entire lung using a very large heterogeneous 3 

dataset. We successfully discriminated COVID-19 from other lung diseases and also COVID-19 from 4 

other community-acquired pneumonia. Radiomic features of whole lung and machine learning 5 

algorithms combination could effectively detect COVID-19 cases to boost clinical diagnosis without 6 

the need for other diagnostic tests. 7 

 8 
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Figure captions 1 

Figure 1. Flowchart of different steps implemented in this study. 2 

Figure 2. Cluster heat map of the whole dataset. Columns and rows are the radiomics features and 3 

patients sample, respectively. 4 

Figure 3. Correlation matrix between different features in the entire dataset. 5 

Figure 4. Heatmaps of the cross-combination of feature selectors (12 rows) and classifiers (8 columns) 6 

for AUC, sensitivity, specificity, accuracy, PPV, NPV in dataset #1. 7 

Figure 5. Heatmaps of the cross-combination of feature selectors (12 rows) and classifiers (8 columns) 8 

for AUC, sensitivity, specificity, accuracy, PPV, NPV in dataset #2. 9 

Figure 6. Heatmaps of the cross-combination of feature selectors (12 rows) and classifiers (8 columns) 10 

for AUC, sensitivity, specificity, accuracy, PPV, NPV in dataset #3. 11 

Figure 7. ROC curves for dataset #1 (a), dataset #2 (b) and dataset #3 (c). For figure (a, b and c), 12 

confidence intervals are also plotted (gray) with 10000 bootstrapping. The confidence intervals are very 13 

small due to the large scale of our study. In figure (d), the results from strategies 1-3 are plotted all on 14 

one figure to compare the different algorithms. 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.21267367doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.07.21267367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

Figure 1: Flow chart of different steps implemented in this study.2 
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Figure 2: Cluster heat map of entire datasets, columns and rows are the radiomics features and patients 

sample, respectively 
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Figure 3: Correlation matrix between different features in the entire dataset. 
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Figure 4: Heatmaps of the cross-combination of feature selectors (12 rows) and classifiers (8 columns) for AUC, sensitivity, specificity, accuracy, PPV, 

NPV in dataset 1. 
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Figure 5: Heatmaps of the cross-combination of feature selectors (12 rows) and classifiers (8 columns) for AUC, sensitivity, specificity, accuracy, PPV, 

NPV in dataset 2 
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Figure 6: Heatmaps of the cross-combination of feature selectors (12 rows) and classifiers (8 columns) for AUC, sensitivity, specificity, accuracy, PPV, 

NPV in dataset 3
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Figure 7: ROC curves for dataset (a), dataset 2 (b) and dataset 3 (c). For figure a, b and c, confidence 

intervals are also plotted (gray) with 10000 bootstrapping; the confidence intervals are very small due 

to the large scale of our study. In figure (d), results from strategies 1-3 are plotted all on one figure to 

compare the different algorithms.  
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               TRIPOD Checklist: Prediction Model Development and Validation. 
Section/Topic Item  Checklist Item Page 

Title and abstract 

Title 1 D;V 
Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to 

be predicted. 
1 

Abstract 2 D;V 
Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, 

results, and conclusions. 
1 

Introduction 

Background and 

objectives 

3a D;V Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the 

multivariable prediction model, including references to existing models. 

2-3 

3b D;V 
Specify the objectives, including whether the study describes the development or validation of the model or both. 

3 

Methods 

Source of data 

4a D;V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and 

validation data sets, if applicable. 

4 

4b D;V 
Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up. 

4 

Participants 

5a D;V Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and 

location of centres. 

4-5 

5b D;V 
Describe eligibility criteria for participants. 

4 

5c D;V 
Give details of treatments received, if relevant. 

NA 

Outcome 

6a D;V 
Clearly define the outcome that is predicted by the prediction model, including how and when assessed. 

4,6 

6b D;V 
Report any actions to blind assessment of the outcome to be predicted. 

5-6 

Predictors 

7a D;V Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they 

were measured. 

5-6 

7b D;V 
Report any actions to blind assessment of predictors for the outcome and other predictors. 

5-6 

Sample size 8 D;V 
Explain how the study size was arrived at. 

4 

Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of 

any imputation method. 

NA 

Statistical analysis 

methods 

10a D 
Describe how predictors were handled in the analyses. 

5 

10b D 
Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. 5 

10c V 
For validation, describe how the predictions were calculated. 5-6 

10d D;V 
Specify all measures used to assess model performance and, if relevant, to compare multiple models. 

5-6 

10e V 
Describe any model updating (e.g., recalibration) arising from the validation, if done. 

5-6 

Risk groups 11 D;V Provide details on how risk groups were created, if done. NA 

Development vs. 

validation 
12 V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors. 5-6 

Results 

Participants 

13a D;V Describe the flow of participants through the study, including the number of participants with and without the outcome and, if 

applicable, a summary of the follow-up time. A diagram may be helpful. 

5 

13b D;V Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the 

number of participants with missing data for predictors and outcome. Not mentioned in result 

5 

13c V For validation, show a comparison with the development data of the distribution of important variables (demographics, 

predictors and outcome). 
6-7 

Model development 

14a D 
Specify the number of participants and outcome events in each analysis. 5 

14b D 
If done, report the unadjusted association between each candidate predictor and outcome. 6-7 

Model specification 

15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or 

baseline survival at a given time point). 
6-7 

15b D 
Explain how to the use the prediction model. 6-7 

Model performance 16 D;V 
Report performance measures for the prediction model. 

6-7 

Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance). 
6-7 

Discussion 

Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). 9 

Interpretation 

19a V 
For validation, discuss the results with reference to performance in the development data, and any other validation data. 7-8 

19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant 

evidence. 

7-9 

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 7-9 

Other information 

Supplementary 

information 21 D;V Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets. 9 

Funding 22 D;V Give the source of funding and the role of the funders for the present study. 9 

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model are denoted by V, and items relating to both are denoted D;V. We recommend using the TRIPOD 

Checklist in conjunction with the TRIPOD Explanation and Elaboration document. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.21267367doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.07.21267367
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

CLAIM: Checklist for Artificial Intelligence in Medical Imaging 

Section / Topic No. Item  

TITLE / ABSTRACT    

 1 Identification as a study of AI methodology, specifying the category of technology used (e.g., deep 

learning) 

✓ 

 2 Structured summary of study design, methods, results, and conclusions  ✓ 

INTRODUCTION    

 3 Scientific and clinical background, including the intended use and clinical role of the AI approach ✓ 

 4 Study objectives and hypotheses ✓ 

METHODS    

Study Design 5 Prospective or retrospective study ✓ 

 6 Study goal, such as model creation, exploratory study, feasibility study, non-inferiority trial ✓ 

Data 7 Data sources ✓ 

 8 Eligibility criteria: how, where, and when potentially eligible participants or studies were identified (e.g.,  

symptoms, results from previous tests, inclusion in registry, patient-care setting, location, dates) 

✓ 

 9 Data pre-processing steps  ✓ 

 10 Selection of data subsets, if applicable ✓ 

 11 Definitions of data elements, with references to Common Data Elements ✓ 

 12 De-identification methods ✓ 

 13 How missing data were handled ✓ 

Ground Truth 14 Definition of ground truth reference standard, in sufficient detail to allow replication ✓ 

 15 Rationale for choosing the reference standard (if alternatives exist) ✓ 

 16 Source of ground-truth annotations; qualifications and preparation of annotators ✓ 

 17 Annotation tools ✓ 

 18 Measurement of inter- and intrarater variability; methods to mitigate variability and/or resolve discrepancies - 

Data Partitions 19 Intended sample size and how it was determined - 

 20 How data were assigned to partitions; specify proportions ✓ 

 21 Level at which partitions are disjoint (e.g., image, study, patient, institution) ✓ 

Model 22 Detailed description of model, including inputs, outputs, all intermediate layers and connections ✓ 

 23 Software libraries, frameworks, and packages ✓ 

 24 Initialization of model parameters (e.g., randomization, transfer learning) ✓ 

Training 25 Details of training approach, including data augmentation, hyperparameters, number of models trained ✓ 

 26 Method of selecting the final model ✓ 

 27 Ensembling techniques, if applicable ✓ 

Evaluation 28 Metrics of model performance ✓ 

 29 Statistical measures of significance and uncertainty (e.g., confidence intervals) ✓ 

 30 Robustness or sensitivity analysis - 

 31 Methods for explainability or interpretability (e.g., saliency maps), and how they were validated - 

 32 Validation or testing on external data ✓ 

RESULTS    

Data 33 Flow of participants or cases, using a diagram to indicate inclusion and exclusion - 

 34 Demographic and clinical characteristics of cases in each partition ✓ 

Model performance 35 Performance metrics for optimal model(s) on all data partitions ✓ 

 36 Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals) ✓ 

 37 Failure analysis of incorrectly classified cases - 

DISCUSSION    

 38 Study limitations, including potential bias, statistical uncertainty, and generalizability ✓ 

 39 Implications for practice, including the intended use and/or clinical role  ✓ 

OTHER INFORMATION    

 40 Registration number and name of registry - 

 41 Where the full study protocol can be accessed - 

 42 Sources of funding and other support; role of funders ✓ 
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Figure 1: Cluster heat map of dataset 2, columns and rows are the radiomics features and patients sample, respectively 
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Figure 2: Cluster heat map for dataset 3. columns and rows are the radiomics features and patients sample, respectively 
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Figure 3: Correlation matrix between different features in dataset 2 
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Figure 4: Correlation matrix between different features in dataset 3 
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Figure 6: Box plot of different quantitative parameters for different feature selectors and classifiers in dataset 1 
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Figure 6: Box plot of different quantitative parameters for different feature selectors and classifiers for dataset 2 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.21267367doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.07.21267367
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

 

 

 

Figure 7: Box plot of different quantitative parameters for different feature selectors and classifiers for dataset 3 
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Figure 8: Statistical comparison of AUC values for different model using DeLong test in dataset 1 
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Figure 9: Statistical comparison of AUC values for different models using DeLong test in dataset 2 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.21267367doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.07.21267367
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
 

 

Figure 10: Statistical comparison of AUC values for different models using DeLong test in dataset 3 
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Table 1: Univariate analysis in dataset 1 

Feature  Auc_train Auc_test Sensitivity_test Specificity_test optimalcut delong_test 

Shape Elongation 0.57 0.57 1 0.01 0.25 0.8 

Flatness 0.85 0.84 0 1 0.95 0.92 

Least Axis Length 0.85 0.85 1 0 0.07 0.91 

Major Axis Length 0.5 0.5 0.93 0.11 0.37 0.98 

Maximum 2D Diameter Column 0.74 0.74 1 0 0.26 0.98 

Maximum 2D Diameter Row 0.74 0.74 1 0.01 0.17 0.91 

Maximum 2D Diameter Slice 0.56 0.54 1 0 0.22 0.03 

Maximum 3D Diameter 0.67 0.66 1 0 0.32 0.6 

Mesh Volume 0.84 0.84 1 0 0.12 0.81 

Minor Axis Length 0.58 0.58 1 0.01 0.24 0.91 

Sphericity 0.84 0.84 1 0 0.01 0.62 

Surface Area 0.84 0.84 1 0 0.09 0.79 

Surface Volume Ratio 0.84 0.84 0 1 0.82 0.79 

Voxel Volume 0.84 0.84 1 0 0.12 0.81 

First Order 10-Percentile 0.52 0.51 0.97 0.02 0.34 0.48 

90-Percentile 0.5 0.51 0.81 0.27 0.36 0.29 

Energy 0.81 0.82 1 0 0.18 0.48 

Entropy 0.56 0.56 1 0 0.26 0.62 

Interquartile Range 0.55 0.56 0.68 0.43 0.38 0.33 

Kurtosis 0.61 0.62 0.94 0.08 0.27 0.15 

Mean Absolute Deviation 0.5 0.51 0.69 0.38 0.36 0.64 

Mean 0.5 0.51 0.76 0.27 0.37 0.32 

Median 0.52 0.53 0.97 0.03 0.38 0.36 

Range 0.58 0.59 0.32 0.76 0.39 0.08 

Robust Mean Absolute Deviation 0.54 0.55 0.54 0.56 0.38 0.35 

Root Mean Squared 0.51 0.52 0.99 0.02 0.38 0.31 

Skewness 0.62 0.63 1 0 0.16 0.18 

Total Energy 0.81 0.82 1 0 0.18 0.48 

Uniformity 0.58 0.58 0 1 0.89 0.58 

Variance 0.55 0.55 0.97 0.03 0.3 0.97 

GLCM Autocorrelation 0.55 0.56 1 0 0.12 0.67 

Cluster Prominence 0.77 0.78 1 0 0.16 0.41 

Cluster Shade 0.75 0.75 1 0.01 0.09 0.18 

Cluster Tendency 0.6 0.6 1 0 0.28 0.95 

Contrast 0.81 0.8 0 1 0.96 0.3 

Correlation 0.77 0.77 0 1 0.83 0.62 

Difference Average 0.79 0.78 0 1 0.99 0.76 

Difference Entropy 0.76 0.76 0 1 1 0.79 

Difference Variance 0.76 0.75 0 1 0.94 0.18 

Id 0.73 0.73 1 0 0.01 0.89 

Idm 0.74 0.74 0 1 0.99 0.92 

Idmn 0.75 0.76 0 1 0.84 0.89 

Idn 0.77 0.77 0 1 0.97 0.57 

Imc1 0.72 0.71 0 1 0.97 0.39 

Imc2 0.73 0.72 1 0 0.03 0.7 

Inverse Variance 0.55 0.55 0.1 0.93 0.42 0.29 

Joint Average 0.58 0.59 1 0 0.05 0.58 

Joint Energy 0.62 0.62 0 1 1 0.74 

Joint Entropy 0.61 0.61 1 0 0.13 0.88 

MCC 0.78 0.77 0 1 0.84 0.82 

Maximum Probability 0.63 0.63 1 0 0.24 0.94 

Sum Average 0.58 0.59 1 0 0.05 0.58 

Sum Entropy 0.53 0.53 0 1 0.58 0.64 

Sum Squares 0.56 0.56 1 0 0.28 0.95 

GLRLM Gray Level Non Uniformity 0.82 0.82 1 0 0.18 0.63 

Gray Level Non Uniformity Normalized 0.55 0.56 0 1 0.94 0.57 

Gray Level Variance 0.61 0.61 0.99 0.02 0.28 0.61 

High Gray Level Run Emphasis 0.56 0.56 1 0 0.07 0.79 

Long Run Emphasis 0.65 0.65 1 0 0.25 0.73 

Long Run High Gray Level Emphasis 0.5 0.5 0.54 0.5 0.38 0.53 

Long Run Low Gray Level Emphasis 0.64 0.64 0 1 1 0.86 

Low Gray Level Run Emphasis 0.59 0.6 1 0 0.31 0.7 

Run Entropy 0.69 0.69 0 1 0.94 0.69 

Run Length Non Uniformity 0.78 0.78 0.06 0.96 0.74 0.92 

Run Length Non Uniformity Normalized 0.76 0.76 1 0 0.01 0.97 

Run Percentage 0.73 0.73 0 1 1 0.99 

Run Variance 0.64 0.64 0.03 0.96 0.57 0.72 

Short Run Emphasis 0.75 0.75 0.01 0.99 0.83 0.9 

Short Run High Gray Level Emphasis 0.57 0.57 1 0 0.02 0.9 

Short Run Low Gray Level Emphasis 0.57 0.57 0 1 0.59 0.63 

GLSZM Gray Level Non Uniformity 0.79 0.79 0.02 0.99 0.88 0.5 

Gray Level Non Uniformity Normalized 0.66 0.67 0.09 0.95 0.47 0.13 

Gray Level Variance 0.63 0.65 0.19 0.89 0.43 0.12 

High Gray Level Zone Emphasis 0.55 0.55 0.75 0.36 0.38 0.64 

Large Area Emphasis 0.85 0.85 0 1 1 0.99 

Large Area High Gray Level Emphasis 0.83 0.83 0 1 1 0.56 

Large Area Low Gray Level Emphasis 0.79 0.79 0 1 1 0.91 

Low Gray Level Zone Emphasis 0.55 0.55 1 0 0.36 0.64 

Size Zone Non Uniformity 0.73 0.74 0.1 0.95 0.61 0.26 

Size Zone Non Uniformity Normalized 0.63 0.61 0.11 0.95 0.53 0.03 

Small Area Emphasis 0.63 0.61 0.1 0.96 0.43 0.03 

Small Area High Gray Level Emphasis 0.54 0.55 0.61 0.55 0.39 0.19 
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Small Area Low Gray Level Emphasis 0.55 0.56 0.46 0.67 0.39 0.48 

Zone Entropy 0.67 0.66 1 0 0.08 0.36 

Zone Percentage 0.71 0.7 0.03 0.98 0.69 0.07 

Zone Variance 0.85 0.85 0 1 1 0.99 

GLDM Dependence Entropy 0.56 0.55 0.99 0.01 0.31 0.36 

Dependence Non Uniformity 0.79 0.79 1 0 0.19 0.97 

Dependence Non Uniformity Normalized 0.72 0.72 1 0 0.01 0.63 

Dependence Variance 0.69 0.69 0.01 0.99 0.7 0.81 

Gray Level Non Uniformity 0.83 0.84 1 0 0.16 0.56 

Gray Level Variance 0.55 0.55 0.97 0.03 0.3 0.97 

High Gray Level Emphasis 0.57 0.57 1 0 0.08 0.64 

Large Dependence Emphasis 0.73 0.73 1 0 0.09 0.99 

Large Dependence High Gray Level Emphasis 0.56 0.56 0 1 1 0.67 

Large Depen dence Low Gray Level Emphasis 0.68 0.68 0 1 1 0.84 

Low Gray Level Emphasis 0.6 0.6 1 0 0.29 0.72 

Small Dependence Emphasis 0.75 0.75 0.02 1 0.79 0.25 

Small Dependence High Gray Level Emphasis 0.62 0.61 0.01 0.99 0.5 0.21 

Small Dependence Low Gray Level Emphasis 0.5 0.51 0.3 0.77 0.42 0.27 

NGTDM Busyness 0.77 0.77 0 1 1 0.34 

Coarseness 0.8 0.8 1 0 0.01 0.43 

Complexity 0.57 0.55 0.17 0.9 0.44 0.06 

Contrast 0.6 0.61 1 0 0.06 0.57 

Strength 0.75 0.74 0 1 0.39 0.16 
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Table 2: Univariate analysis in dataset 2  
  

Auc_train Auc_test Sensitivity_test Specificity_test optimalcut delong_test 
Shape Elongation 0.57 0.58 1 0.01 0.33 0.51 

Flatness 0.85 0.85 1 0 0.08 0.41 
Least Axis Length 0.85 0.85 1 0 0.08 0.39 
Major Axis Length 0.51 0.5 0.98 0.04 0.43 0.59 

Maximum 2D Diameter Column 0.74 0.74 0 1 0.99 0.33 
Maximum 2D Diameter Row 0.74 0.74 1 0.01 0.24 0.28 
Maximum 2D Diameter Slice 0.55 0.56 1 0 0.27 0.29 

Maximum 3D Diameter 0.66 0.67 1 0 0.39 0.52 
Mesh Volume 0.84 0.85 1 0 0.14 0.26 

Minor Axis Length 0.58 0.59 1 0.01 0.33 0.17 
Sphericity 0.85 0.86 1 0.01 0.01 0.39 

Surface Area 0.84 0.85 1 0.01 0.11 0.27 
Surface Volume Ratio 0.84 0.85 0 1 0.86 0.46 

Voxel Volume 0.84 0.85 1 0 0.14 0.26 
First Order 10-Percentile 0.52 0.51 1 0 0.39 0.37 

90-Percentile 0.5 0.5 0.68 0.4 0.43 0.85 
Energy 0.81 0.82 1 0.01 0.21 0.24 
Entropy 0.57 0.56 1 0 0.28 0.53 

Interquartile Range 0.56 0.56 0.45 0.65 0.44 0.44 
Kurtosis 0.62 0.62 0.93 0.09 0.31 0.86 

Mean Absolute Deviation 0.51 0.5 0.79 0.29 0.41 0.64 
Mean 0.5 0.5 0.92 0.12 0.43 0.87 

Median 0.53 0.53 1 0.01 0.41 0.74 
Range 0.59 0.62 0.27 0.79 0.45 0 

Robust Mean Absolute Deviation 0.55 0.54 0.59 0.51 0.44 0.49 
Root Mean Squared 0.52 0.52 0.98 0.03 0.43 0.78 

Skewness 0.64 0.63 1 0 0.17 0.76 
Total Energy 0.81 0.82 1 0.01 0.21 0.24 
Uniformity 0.59 0.58 0 1 0.95 0.5 
Variance 0.55 0.56 0.98 0.03 0.36 0.6 

GLCM Autocorrelation 0.56 0.57 1 0 0.14 0.73 
Cluster Prominence 0.78 0.78 1 0.01 0.18 0.55 

Cluster Shade 0.75 0.76 1 0.01 0.1 0.38 
Cluster Tendency 0.6 0.6 1 0.01 0.33 0.64 

Contrast 0.8 0.79 0 1 0.97 0.25 
Correlation 0.77 0.77 0 1 0.88 0.78 

Difference Average 0.78 0.77 0 1 0.99 0.27 
Difference Entropy 0.75 0.74 0 1 1 0.26 
Difference Variance 0.75 0.74 0 1 0.95 0.46 

Id 0.74 0.73 1 0 0.01 0.34 
Idm 0.74 0.73 1 0 0.01 0.34 

Idmn 0.75 0.76 0 1 0.85 0.02 
Idn 0.76 0.77 1 0 0.01 0.06 

Imc1 0.71 0.71 1 0 0.11 0.87 
Imc2 0.72 0.72 1 0 0.02 0.97 

Inverse Variance 0.55 0.56 0.12 0.89 0.47 0.33 
Joint Average 0.59 0.59 1 0 0.05 0.66 
Joint Energy 0.63 0.62 0.02 0.98 0.69 0.47 
Joint Entropy 0.62 0.61 1 0 0.16 0.47 

MCC 0.78 0.78 0 1 0.89 0.9 
Maximum Probability 0.64 0.63 0.02 0.98 0.71 0.57 

Sum Average 0.59 0.59 1 0 0.05 0.66 
Sum Entropy 0.54 0.53 1 0 0.37 0.57 
Sum Squares 0.57 0.57 1 0.01 0.34 0.6 

GLRLM Gray Level Non Uniformity 0.82 0.83 1 0 0.21 0.25 
Gray Level Non Uniformity Normalized 0.56 0.56 0 1 0.98 0.63 

Gray Level Variance 0.61 0.62 0.97 0.04 0.33 0.58 
High Gray Level Run Emphasis 0.56 0.57 1 0 0.08 0.71 

Long Run Emphasis 0.65 0.65 0.03 0.97 0.68 0.37 
Long Run High Gray Level Emphasis 0.51 0.52 0 1 0.99 0.26 
Long Run Low Gray Level Emphasis 0.64 0.64 0 0.99 1 0.75 

Low Gray Level Run Emphasis 0.6 0.61 0 1 0.99 0.21 
Run Entropy 0.68 0.68 1 0 0.09 0.97 

Run Length Non Uniformity 0.8 0.81 0.08 0.95 0.78 0.17 
Run Length Non Uniformity Normalized 0.77 0.76 1 0 0.01 0.29 

Run Percentage 0.74 0.73 1 0 0.04 0.34 
Run Variance 0.64 0.64 0.05 0.95 0.61 0.42 

Short Run Emphasis 0.75 0.74 0.01 0.99 0.87 0.26 
Short Run High Gray Level Emphasis 0.58 0.58 1 0 0.02 0.81 
Short Run Low Gray Level Emphasis 0.58 0.59 0.03 0.97 0.56 0.14 

GLSZM Gray Level Non Uniformity 0.79 0.8 0.02 0.99 0.92 0.14 
Gray Level Non Uniformity Normalized 0.67 0.68 0.08 0.95 0.57 0.26 

Gray Level Variance 0.65 0.66 0.19 0.89 0.5 0.07 
High Gray Level Zone Emphasis 0.54 0.54 0.71 0.41 0.44 0.84 

Large Area Emphasis 0.84 0.84 0 0.99 1 0.7 
Large Area High Gray Level Emphasis 0.82 0.82 1 0 0.32 0.8 
Large Area Low Gray Level Emphasis 0.79 0.79 0 0.99 1 0.39 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2021. ; https://doi.org/10.1101/2021.12.07.21267367doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.07.21267367
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

Low Gray Level Zone Emphasis 0.56 0.58 0.06 0.96 0.45 0.07 
Size Zone Non Uniformity 0.74 0.75 0.08 0.95 0.7 0.19 

Size Zone Non Uniformity Normalized 0.6 0.59 0.16 0.9 0.55 0.47 
Small Area Emphasis 0.6 0.59 0.16 0.93 0.46 0.4 

Small Area High Gray Level Emphasis 0.56 0.56 0.75 0.38 0.44 0.91 
Small Area Low Gray Level Emphasis 0.57 0.59 1 0 0.41 0.04 

Zone Entropy 0.66 0.66 1 0 0.08 0.88 
Zone Percentage 0.69 0.68 0.04 0.98 0.71 0.25 
Zone Variance 0.84 0.84 0 0.99 1 0.7 

GLDM Dependence Entropy 0.55 0.55 1 0.01 0.37 0.71 
Dependence Non Uniformity 0.81 0.82 0.07 0.94 0.81 0.13 

Dependence Non Uniformity Normalized 0.73 0.72 1 0.01 0.01 0.39 
Dependence Variance 0.69 0.69 0.03 0.98 0.74 0.47 

Gray Level Non Uniformity 0.83 0.84 1 0 0.2 0.27 
Gray Level Variance 0.55 0.56 0.98 0.03 0.36 0.61 

High Gray Level Emphasis 0.58 0.58 1 0 0.09 0.78 
Large Dependence Emphasis 0.73 0.72 1 0 0.1 0.38 

Large Dependence High Gray Level Emphasis 0.55 0.54 0 1 1 0.2 
Large Depen dence Low Gray Level Emphasis 0.68 0.68 0 1 1 0.72 

Low Gray Level Emphasis 0.61 0.62 1 0 0.34 0.24 
Small Dependence Emphasis 0.74 0.73 0.03 0.99 0.77 0.15 

Small Dependence High Gray Level Emphasis 0.6 0.6 0.02 0.99 0.54 0.5 
Small Dependence Low Gray Level Emphasis 0.52 0.53 0.44 0.67 0.47 0.04 

NGTDM Busyness 0.78 0.78 0 1 1 0.88 
Coarseness 0.8 0.81 1 0.01 0.01 0.22 
Complexity 0.55 0.52 0.25 0.86 0.49 0 

Contrast 0.61 0.62 0 1 0.55 0.19 
Strength 0.75 0.74 0 1 0.45 0.11 
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Table 3: Univariate analysis in dataset 3 

Feature 

Parent 
Feature Name Auc_train Auc_test Sensitivity_test Specificity_test optimalcut delong_test 

shape Elongation 0.87 0.88 0 1 1 0.36 
Flatness 0.99 1 0 1 0.99 0.09 

Least Axis Length 0.99 1 0 1 0.98 0.06 
Major Axis Length 0.58 0.57 1 0.05 0.19 0.85 

Maximum 2D Diameter Column 0.92 0.94 0 0.99 1 0.03 
Maximum 2D Diameter Row 0.95 0.96 0 0.98 1 0.26 
Maximum 2D Diameter Slice 0.58 0.58 0.98 0.02 0.12 0.94 

Maximum 3D Diameter 0.88 0.91 0 0.99 1 0.02 
Mesh Volume 1 1 0 0.99 1 0.34 

Minor Axis Length 0.89 0.91 0 0.99 1 0.39 
Sphericity 0.98 0.98 0 1 1 0.62 

Surface Area 1 1 0 0.99 1 0.39 
Surface Volume Ratio 0.99 1 0 0.99 1 0.12 

Voxel Volume 1 1 0 0.99 1 0.34 
First 

order 

10-Percentile 0.85 0.84 0 1 1 0.71 
90-Percentile 0.76 0.75 1 0 0.06 0.67 

Energy 1 1 0 0.99 1 0.87 
Entropy 0.65 0.63 0.03 1 0.41 0.29 

Interquartile Range 0.71 0.69 0 0.99 0.76 0.52 
Kurtosis 0.76 0.75 0 0.99 0.54 0.66 

Mean Absolute Deviation 0.68 0.66 0 0.99 0.65 0.59 
Mean 0.79 0.78 1 0 0.05 0.68 

Median 0.79 0.78 0 1 0.9 0.69 
Range 0.95 0.93 0 0.99 1 0.36 

Robust Mean Absolute Deviation 0.71 0.7 0 0.99 0.75 0.64 
Root Mean Squared 0.8 0.8 0 1 0.94 0.73 

Skewness 0.76 0.75 0 1 0.76 0.64 
Total Energy 1 1 0 0.99 1 0.87 
Uniformity 0.67 0.63 0.03 1 0.42 0.24 
Variance 0.61 0.6 0 0.99 0.55 0.68 

GLCM Autocorrelation 0.69 0.69 0.01 1 0.43 0.91 
Cluster Prominence 0.6 0.58 0.83 0.21 0.21 0.61 

Cluster Shade 0.62 0.57 0.85 0.17 0.19 0.26 
Cluster Tendency 0.58 0.56 0.97 0.1 0.18 0.65 

Contrast 0.68 0.67 1 0 0.07 0.73 
Correlation 0.54 0.56 0.8 0.28 0.19 0.5 

Difference Average 0.64 0.61 1 0.01 0.1 0.29 
Difference Entropy 0.63 0.6 1 0.01 0.09 0.38 
Difference Variance 0.66 0.69 1 0 0.07 0.43 

Id 0.55 0.52 1 0 0.15 0.11 
Idm 0.55 0.5 1 0 0.15 0.11 

Idmn 0.97 0.96 0 1 1 0.4 
Idn 0.93 0.91 0 1 1 0.16 

Imc1 0.64 0.62 0.99 0.01 0.1 0.65 
Imc2 0.55 0.52 0.91 0.14 0.2 0.44 

Inverse Variance 0.83 0.86 0 1 1 0.17 
Joint Average 0.71 0.72 0.02 1 0.48 0.7 
Joint Energy 0.61 0.56 0.06 0.95 0.32 0.13 
Joint Entropy 0.61 0.57 0.03 0.98 0.36 0.18 

MCC 0.52 0.54 0.87 0.3 0.19 0.1 
Maximum Probability 0.58 0.53 0.04 0.98 0.3 0.08 

Sum Average 0.71 0.72 0.02 1 0.48 0.7 
Sum Entropy 0.65 0.61 0.04 0.99 0.39 0.26 
Sum Squares 0.6 0.58 0.98 0.05 0.17 0.67 

GLRLM Gray Level Non Uniformity 1 1 0 1 1 0.37 
Gray Level Non Uniformity Normalized 0.69 0.67 0.03 1 0.46 0.47 

Gray Level Variance 0.56 0.56 0 0.99 0.43 0.86 
High Gray Level Run Emphasis 0.71 0.72 0.03 1 0.4 0.71 

Long Run Emphasis 0.53 0.59 0.8 0.14 0.21 0.1 
Long Run High Gray Level Emphasis 0.76 0.78 1 0 0.12 0.38 
Long Run Low Gray Level Emphasis 0.68 0.66 0.01 1 0.38 0.68 

Low Gray Level Run Emphasis 0.78 0.81 0.03 1 0.54 0.3 
Run Entropy 0.66 0.65 0 0.96 0.48 0.84 

Run Length Non Uniformity 1 1 0 0.96 1 0.11 
Run Length Non Uniformity Normalized 0.57 0.52 1 0 0.13 0.13 

Run Percentage 0.53 0.52 1 0 0.15 0.67 
Run Variance 0.54 0.6 1 0.01 0.19 0.08 

Short Run Emphasis 0.55 0.51 1 0 0.14 0.13 
Short Run High Gray Level Emphasis 0.7 0.71 0.02 1 0.4 0.79 
Short Run Low Gray Level Emphasis 0.79 0.82 0.03 1 0.56 0.23 

GLSZM Gray Level Non Uniformity 1 1 0 0.99 1 0.27 
Gray Level Non Uniformity Normalized 0.68 0.7 1 0 0.06 0.54 

Gray Level Variance 0.87 0.9 0 1 0.99 0.28 
High Gray Level Zone Emphasis 0.66 0.66 0.04 0.99 0.27 0.97 

Large Area Emphasis 0.96 0.95 0 1 0.91 0.79 
Large Area High Gray Level Emphasis 0.92 0.9 0 1 0.79 0.34 
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Large Area Low Gray Level Emphasis 0.9 0.91 0 1 0.64 0.48 
Low Gray Level Zone Emphasis 0.85 0.89 0.02 1 0.7 0.03 

Size Zone Non Uniformity 1 1 0 1 1 0.25 
Size Zone Non Uniformity Normalized 0.72 0.7 1 0 0.01 0.56 

Small Area Emphasis 0.72 0.7 1 0 0.02 0.6 
Small Area High Gray Level Emphasis 0.6 0.58 0.79 0.27 0.23 0.68 
Small Area Low Gray Level Emphasis 0.84 0.88 0.01 0.99 0.69 0.04 

Zone Entropy 0.56 0.54 1 0.01 0.14 0.4 
Zone Percentage 0.58 0.56 0.93 0.23 0.17 0.75 
Zone Variance 0.96 0.95 0 1 0.91 0.79 

GLDM Dependence Entropy 0.67 0.65 0 0.98 0.54 0.45 
Dependence Non Uniformity 1 1 0 0.96 1 0.12 

Dependence Non Uniformity Normalized 0.51 0.54 0.66 0.41 0.22 0.08 
Dependence Variance 0.55 0.61 0.92 0.06 0.19 0.05 

Gray Level Non Uniformity 0.99 0.99 0 1 0.99 0.63 
Gray Level Variance 0.61 0.6 0 0.99 0.56 0.67 

High Gray Level Emphasis 0.7 0.71 0.01 1 0.47 0.85 
Large Dependence Emphasis 0.51 0.55 0.49 0.57 0.23 0.07 

Large Dependence High Gray Level Emphasis 0.73 0.74 1 0 0.13 0.68 
Large Depen dence Low Gray Level Emphasis 0.68 0.67 0.02 1 0.39 0.66 

Low Gray Level Emphasis 0.77 0.79 0.02 1 0.53 0.43 
Small Dependence Emphasis 0.56 0.54 0.89 0.22 0.18 0.5 

Small Dependence High Gray Level Emphasis 0.65 0.63 0.04 0.99 0.27 0.54 
Small Dependence Low Gray Level Emphasis 0.78 0.83 1 0.01 0.01 0.09 

NGTDM Busyness 0.94 0.96 0 1 0.89 0.05 
Coarseness 1 1 0 0.95 1 0.39 
Complexity 0.91 0.91 0 0.99 0.93 0.93 

Contrast 0.9 0.89 0 1 1 0.69 
Strength 0.7 0.73 0 1 0.99 0.26 
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